neural_engine.py
01
alphaScore = Σ(factorWeights[i] × zScores[i])02
volatility = sqrt(Σ((returns[i] - μ)²) / n)03
sharpeRatio = (E[R] - Rf) / σ(R)04
EMA[t] = α × Price[t] + (1-α) × EMA[t-1]05
zscore = (x - μ) / σ06
TVL_rate = dTVL/dt / TVL07
sentiment = NER ⊗ polarity_scores08
liquidityDepth = Σ(bids[i].volume + asks[i].volume)09
orderflow = tanh(Δvolume_buy - Δvolume_sell)10
spread = (ask - bid) / midpoint × 10000 # bps11
swaps → temporal_clusters → anomaly_score12
VaR₉₅ = μ - 1.645σ13
arbitrage_signal = max(0, cross_exchange_delta - fees)14
β = Cov(asset, market) / Var(market)15
kalman_gain = P⁻ Hᵀ(HPᵀH + R)⁻¹16
momentum = (price[t] / price[t-k]) - 117
LSTM_state = tanh(Wₓxₜ + Wₕhₜ₋₁ + b)18
risk_parity = w[i] = (1/σ[i]) / Σ(1/σ[j])19
drawdown = (peak - current) / peak20
correlation_matrix = ρᵢⱼ = Cov(Xᵢ,Xⱼ) / (σᵢσⱼ)21
gamma_exposure = Σ(Γᵢ × OIᵢ × spotPrice²)22
funding_rate = (mark_price - index) / 8h23
impermanent_loss = 2√(price_ratio) / (1+price_ratio) - 124
order_toxicity = signed_volume / sqrt(volume²)25
microstructure_noise = Var(observed) - Var(true)01
alphaScore = Σ(factorWeights[i] × zScores[i])02
volatility = sqrt(Σ((returns[i] - μ)²) / n)03
sharpeRatio = (E[R] - Rf) / σ(R)04
EMA[t] = α × Price[t] + (1-α) × EMA[t-1]05
zscore = (x - μ) / σ06
TVL_rate = dTVL/dt / TVL07
sentiment = NER ⊗ polarity_scores08
liquidityDepth = Σ(bids[i].volume + asks[i].volume)09
orderflow = tanh(Δvolume_buy - Δvolume_sell)10
spread = (ask - bid) / midpoint × 10000 # bps11
swaps → temporal_clusters → anomaly_score12
VaR₉₅ = μ - 1.645σ13
arbitrage_signal = max(0, cross_exchange_delta - fees)14
β = Cov(asset, market) / Var(market)15
kalman_gain = P⁻ Hᵀ(HPᵀH + R)⁻¹16
momentum = (price[t] / price[t-k]) - 117
LSTM_state = tanh(Wₓxₜ + Wₕhₜ₋₁ + b)18
risk_parity = w[i] = (1/σ[i]) / Σ(1/σ[j])19
drawdown = (peak - current) / peak20
correlation_matrix = ρᵢⱼ = Cov(Xᵢ,Xⱼ) / (σᵢσⱼ)21
gamma_exposure = Σ(Γᵢ × OIᵢ × spotPrice²)22
funding_rate = (mark_price - index) / 8h23
impermanent_loss = 2√(price_ratio) / (1+price_ratio) - 124
order_toxicity = signed_volume / sqrt(volume²)25
microstructure_noise = Var(observed) - Var(true)01
alphaScore = Σ(factorWeights[i] × zScores[i])02
volatility = sqrt(Σ((returns[i] - μ)²) / n)03
sharpeRatio = (E[R] - Rf) / σ(R)04
EMA[t] = α × Price[t] + (1-α) × EMA[t-1]05
zscore = (x - μ) / σ06
TVL_rate = dTVL/dt / TVL07
sentiment = NER ⊗ polarity_scores08
liquidityDepth = Σ(bids[i].volume + asks[i].volume)09
orderflow = tanh(Δvolume_buy - Δvolume_sell)10
spread = (ask - bid) / midpoint × 10000 # bps11
swaps → temporal_clusters → anomaly_score12
VaR₉₅ = μ - 1.645σ13
arbitrage_signal = max(0, cross_exchange_delta - fees)14
β = Cov(asset, market) / Var(market)15
kalman_gain = P⁻ Hᵀ(HPᵀH + R)⁻¹16
momentum = (price[t] / price[t-k]) - 117
LSTM_state = tanh(Wₓxₜ + Wₕhₜ₋₁ + b)18
risk_parity = w[i] = (1/σ[i]) / Σ(1/σ[j])19
drawdown = (peak - current) / peak20
correlation_matrix = ρᵢⱼ = Cov(Xᵢ,Xⱼ) / (σᵢσⱼ)21
gamma_exposure = Σ(Γᵢ × OIᵢ × spotPrice²)22
funding_rate = (mark_price - index) / 8h23
impermanent_loss = 2√(price_ratio) / (1+price_ratio) - 124
order_toxicity = signed_volume / sqrt(volume²)25
microstructure_noise = Var(observed) - Var(true)Processing...0 ops/sec
Web3 Intelligence
HERMES AI
Crypto Analysis Platform — Coming Soon
Loading... 0%
Signal Strength83.27
α(21) ↑ 0.42 • vol ↓ 3.1%
Market Microstructure12.56
orderflow z=1.8 • spread 4.2bps
Factor Radarβ 0.62
value • momentum • on-chain • liquidity • risk • sentiment
Anomaly Detection
On-chain Insights
Alpha Score
DeFi Liquidity Scan
AI • DeFi • Analytics|© 2025 Hermes AI